Essentials of Human Anatomy & Physiology

Elaine N. Marieb

Seventh Edition

Chapter 2

Basic Chemistry

Slides 2.1 – 2.42

Lecture Slides in PowerPoint by Jerry L. Cook

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Matter and Energy

- Matter anything that occupies space and has mass (weight)
 - Solids, Liquids, Gasses
 - Physical and Chemical changes
- Energy the ability to do work
 - Kinetic when energy is actually doing work
 - Potential when energy is inactive or stored

Matter and Energy Forms of Energy

- Chemical stored in the bonds of chemical substances
- Electrical results from the movement of charged particles - ions
- Mechanical directly involved in moving matter muscles
- Radiant travels in waves the electromagnetic spectrum including X-rays, infrared, light, radio, and UV rays
- Can easily be converted from 1 form to another but is not 100% efficient – some lost as heat Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Composition of Matter

Elements

- Fundamental units of matter cannot be broken down into smaller units
- 96% of the body is made from four elements
 - Carbon (C)
 - Oxygen (O)
 - Hydrogen (H)
 - Nitrogen (N)
- Atoms

Building blocks of elements

Atomic Structure

- Inside the nucleus
 - Protons (p⁺)
 - Neutrons (n⁰)
- Outside the nucleus
 - Electrons (e⁻)

Figure 2.1

Identifying Elements

- Atomic number
 - Equal to the number of protons that the atoms contain – also equals number of electrons
- Atomic mass number
 - Sum of the protons and neutrons

Atomic Weight and Isotopes

- Isotopes
 - Have the same number of protons and electrons so same atomic number
 - Vary in number of neutrons so different atomic masses
- Atomic weight
 - Close to mass number of most abundant isotope
 - Atomic weight reflects natural isotope variation

Radioactivity

- Radioisotope
 - Heavy isotope
 - Tends to be unstable
 - Decomposes to more stable isotope
- Radioactivity
 - Process of spontaneous atomic decay
 - Releases particles alpha, beta, and gamma rays

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Molecules and Compounds

- Molecule two or more atoms combined chemically
- Compound two or more <u>different</u> atoms combined chemically

 Compounds have properties different from the properties of the atoms they are made of

Chemical Reactions

- Chemical reactions occur when atoms combine or dissociate from other atoms
 - Atoms are united by chemical bonds
 - Atoms dissociate from other atoms when chemical bonds are broken

Electrons and Bonding

- Electrons occupy energy levels called electron levels or shells
- Electrons closest to the nucleus are most strongly attracted
- Each shell has distinct properties
 - Number of electrons has an upper limit
 - Shells closest to nucleus usually fill first

Electrons and Bonding

- Bonding involves interactions between electrons in the outer shell (the valence shell)
- Full valence shells do not form bonds

Inert Elements

- Have complete valence shells and are stable
- Rule of 8s
 - Shell 1 has 2 electrons
 - Shell 2 has 10 electrons
 - 10 = 2 + 8
 - Shell 3 has 18 electrons
 - 18 = 2 + 8 + 8

Helium (He) (2p+; 2nº; 2e-)

Neon (Ne) (10p⁺; 10n⁰; 10e⁻)

(a) Chemically inert elements (valence shell complete)

Reactive Elements

- Valence shells are not full and are unstable
- Tend to gain, lose, or share electrons
 - Allows for bond formation, which produces stable valence

Chemical Bonds Ionic Bonds

 Form when electrons are completely transferred from one atom to another

lons

- Charged particles
 - Either donate or accept electrons
 - Anions are negative have accepted
 - Cations are positive have donated
- Opposites attract so stick together most form salts

Chemical Bonds

- Covalent Bonds
 - Atoms become stable through shared electrons
 - Single covalent bonds share one electron
 - Double covalent bonds share two electrons

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Examples of Covalent Bonds

Figure 2.6a, b

- Polarity Covalent bonded molecules
 - Some are non-polar
 - Electrically neutral as a molecule
 - Some are polar
 - Have a positive and negative side
 - Polar molecules orient themselves toward other polar or charged particles

Chemical Bonds

- Hydrogen bonds
 - Weak chemical bonds
 - Hydrogen is attracted to negative portion of polar molecule
 - Provides attraction between molecules
 - Surface tension bonds between water molecules
 - Intramolecular bonds binding of different parts of the same molecule to form a 3D shape such as proteins

Patterns of Chemical Reactions

- Synthesis reaction $(A+B\rightarrow AB)$
 - Atoms or molecules combine
 - Energy is absorbed for bond formation
 - Anabolic activities constructive activities
- Decomposition reaction (AB→A+B)
 - Molecule is broken down
 - Chemical energy is released when bonds are broken
 - Catabolic processes decomposition activities

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Synthesis and Decomposition Reactions

glucose units

Figure 2.9a, b

Patterns of Chemical Reactions

- Exchange reaction (AB+C \rightarrow AC+B)
 - Involves both synthesis and decomposition reactions
 - Switch is made between molecule parts and different molecules are made

Biochemistry: Essentials for Life

- Organic compounds
 - Contain carbon
 - Most are covalently bonded
 - Example: C₆H₁₂O₆ (glucose)
- Inorganic compounds
 - Lack carbon
 - Tend to be simpler compounds
 - Example: H₂O (water)

Water

- Most abundant inorganic compounds
- Vital properties
 - High heat capacity
 - Polarity/solvent properties
 - Solute, Solvent, Mixture, Solution, Suspension, Colloid
 - Chemical reactivity
 - hydrolysis reactions
 - Cushioning

Salts

- Easily dissociate into ions in the presence of polar water molecules
- Vital to many body functions
- Include electrolytes, which conduct electrical currents in solution

- Like salts, acids and bases are electrolytes
- Acids H⁺
 - Can release detectable hydrogen ions
 - Sour taste and can "burn"
 - Proton donors
- Bases OH⁻
 - Bitter taste, slippery
 - Proton acceptors
- Neutralization reaction

• Acids and bases react to form water and a salt Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

pН

- Measures relative concentration of hydrogen ions
 - pH 7 = neutral
 - pH below 7 = acidic
 - pH above 7 = basic
 - Buffers
 - Chemicals that can regulate pH change

- Carbohydrates
 - Contain carbon, hydrogen, and oxygen in a 1:2:1 ratio
 - Include sugars and starches
 - Classified according to size
 - Monosaccharides simple sugars
 - Disaccharides two simple sugars joined by dehydration synthesis – H₂O is lost
 - Polysaccharides long branching chains of linked simple sugars

Carbohydrates

 Provide a ready, easily used source of food energy for cells

(b) Double sugar (disaccharide)

Figure 2.12a, b

(c) Starch (polysaccharide)

Figure 2.12c

Lipids

- Contain carbon, hydrogen, and oxygen
 - Carbon and hydrogen outnumber oxygen
- Insoluble in water but soluble in other lipids
 - "Like dissolves like"

- Common lipids in the human body
 - Neutral fats (triglycerides)
 - Found in fat deposits
 - Composed of fatty acids and glycerol
 - Solid (animal fats) or liquid (plant fats)
 - Saturated animal fats or unsaturated plant fats
 - Source of stored energy

- Common lipids in the human body (continued)
 - Phospholipids
 - Form cell membranes polar properties
 - Steroids
 - Four interlocking rings
 - Fat-soluble
 - Include cholesterol, bile salts, vitamin D, and some hormones

Copyright $\ensuremath{\mathbb{C}}$ 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Lipids

Slide 2.34

Cholesterol

Figure 2.14c

Important Organic Compounds Proteins

- Made of strings of the 20 amino acids
 - Contain carbon, oxygen, hydrogen, nitrogen, and sometimes sulfur
 - Amino acids have three main parts
 - Amine group gives basic properties
 - Acid group allows them to act as acids
 - R-group variable

• Strung together with peptide bonds to make polypeptides (proteins) Copyright © 2003 Pearson Education, Inc. publishing & Benjamin Cummings

- Account for over half of the body's organic matter
 - Provides for construction materials for body tissues
 - Plays a vital role in cell function
 - Act as enzymes, hormones, and antibodies
 - Classified in two divisions
 - Fibrous (structural) proteins
 - Globular (functional) proteins
 - Can be denatured by heat, pH changes changes the active site (structure and function)

Enzymes

• Act as biological catalysts – names end in ase

- Increase the rate of chemical reactions by lowering the level of activation energy required for the reaction
- Do not get changed by the reactions they work with
- Can be used multiple times only need small amounts
- Determine which reactions can take place enzyme must be present for reaction to occur
- Specific for their individual job

Enzymes

•Structure of enzyme (really a protein) must be correct before it can bind to the substrate – structure and function

- •Just like proteins, can be denatured by heat or changes in pH
- •Can be activated or deactivated according to bodies need for the enzyme

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

- Nucleic Acids
 - Provide blueprint of life
 - Nucleotide bases
 - A = Adenine
 - G = Guanine
 - C = Cytosine
 - T = Thymine
 - U = Uracil
 - Make DNA and RNA

- •Nucleotides 3 parts
 - Nitrogen-containing
 base
 - •A pentose sugar either deoxyribose or ribose
 - A phosphate group

- Deoxyribonucleic acid (DNA)
 - Organized by complimentary bases to form double helix
 - Replicates before cell division
 - Provides instruction for every protein in the body

Figure 2.17c

- Ribonucleic acid (RNA)
 - Single stranded
 - Three types
 - mRNA, tRNA, rRNA
 - Used in protein synthesis

Figure 2.17c

- Adenosine triphosphate (ATP)
 - Chemical energy used by all cells
 - Energy is released by breaking high energy phosphate bond
 - ATP is replenished by oxidation of food fuels

Adenosine Triphosphate (ATP)

Modified nucleotide

- Adenine base
- Ribose sugar
- Three phosphate groups attached by unique chemical bonds called high-energy phosphate bonds

(a) Adenosine triphosphate (ATP)

Figure 2.18a

How ATP Drives Cellular Work

