Chapter 13
The Respiratory System

Slides 13.1 – 13.30
Organs of the Respiratory system

- Nose
- Pharynx
- Larynx
- Trachea
- Bronchi
- Lungs – alveoli
Function of the Respiratory System

- Oversees gas exchanges between the blood and external environment
- Exchange of gasses takes place within the lungs in the alveoli
- Passageways to the lungs purify, warm, and humidify the incoming air
The Nose

- The only externally visible part of the respiratory system
- Air enters the nose through the external nares (nostrils)
- The interior of the nose consists of a nasal cavity divided by a nasal septum
Anatomy of the Nasal Cavity

- Olfactory receptors are located in the mucosa on the superior surface
- The rest of the cavity is lined with respiratory mucosa
 - Moistens air
 - Traps incoming foreign particles
Anatomy of the Nasal Cavity

• Lateral walls have projections called conchae
 • Increases surface area
 • Increases air turbulence within the nasal cavity

• The nasal cavity is separated from the oral cavity by the palate
 • Anterior hard palate (bone)
 • Posterior soft palate (muscle)
Paranasal Sinuses

- Cavities within bones surrounding the nasal cavity
 - Frontal bone
 - Sphenoid bone
 - Ethmoid bone
 - Maxillary bone
Paranasal Sinuses

- Function of the sinuses
 - Lighten the skull
 - Act as resonance chambers for speech
 - Produce mucus that drains into the nasal cavity
Pharynx (Throat)

- Muscular passage from nasal cavity to larynx
- Three regions of the pharynx
 - Nasopharynx – superior region behind nasal cavity
 - Oropharynx – middle region behind mouth
 - Laryngopharynx – inferior region attached to larynx
- The oropharynx and laryngopharynx are common passageways for air and food
Structures of the Pharynx

- Auditory tubes enter the nasopharynx
- Tonsils of the pharynx
 - Pharyngeal tonsil (adenoids) in the nasopharynx
 - Palatine tonsils in the oropharynx
 - Lingual tonsils at the base of the tongue
Larynx (Voice Box)

- Routes air and food into proper channels
- Plays a role in speech
- Made of eight rigid hyaline cartilages and a spoon-shaped flap of elastic cartilage (epiglottis)
Structures of the Larynx

- Thyroid cartilage
 - Largest hyaline cartilage
 - Protrudes anteriorly (Adam’s apple)
- Epiglottis
 - Superior opening of the larynx
 - Routes food to the larynx and air toward the trachea
Structures of the Larynx

- Vocal cords (vocal folds)
 - Vibrate with expelled air to create sound (speech)
- Glottis – opening between vocal cords
Trachea (Windpipe)

- Connects larynx with bronchi
- Lined with ciliated mucosa
 - Beat continuously in the opposite direction of incoming air
 - Expel mucus loaded with dust and other debris away from lungs
- Walls are reinforced with C-shaped hyaline cartilage
Primary Bronchi

- Formed by division of the trachea
- Enters the lung at the hilus (medial depression)
- Right bronchus is wider, shorter, and straighter than left
- Bronchi subdivide into smaller and smaller branches
Lungs

- Occupy most of the thoracic cavity
 - Apex is near the clavicle (superior portion)
 - Base rests on the diaphragm (inferior portion)
- Each lung is divided into lobes by fissures
 - Left lung – two lobes
 - Right lung – three lobes
Lungs

Figure 13.4b

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Coverings of the Lungs

- Pulmonary (visceral) pleura covers the lung surface
- Parietal pleura lines the walls of the thoracic cavity
- Pleural fluid fills the area between layers of pleura to allow gliding
Respiratory Tree Divisions

- Primary bronchi
- Secondary bronchi
- Tertiary bronchi
- Bronchioli
- Terminal bronchioli
Bronchioles

- Smallest branches of the bronchi
Bronchioles

- All but the smallest branches have reinforcing cartilage
Bronchioles

- Terminal bronchioles end in alveoli

Figure 13.5a
Respiratory Zone

- Structures
 - Respiratory bronchioli
 - Alveolar duct
 - Alveoli
- Site of gas exchange
Alveoli

- Structure of alveoli
 - Alveolar duct
 - Alveolar sac
 - Alveolus
- Gas exchange takes place within the alveoli in the respiratory membrane
Respiratory Membrane (Air-Blood Barrier)

- Thin squamous epithelial layer lining alveolar walls
- Pulmonary capillaries cover external surfaces of alveoli
Respiratory Membrane (Air-Blood Barrier)
Gas Exchange

- Gas crosses the respiratory membrane by diffusion
 - Oxygen enters the blood
 - Carbon dioxide enters the alveoli
- Macrophages add protection
- Surfactant coats gas-exposed alveolar surfaces
Events of Respiration

- Pulmonary ventilation – moving air in and out of the lungs
- External respiration – gas exchange between pulmonary blood and alveoli
Events of Respiration

- Respiratory gas transport – transport of oxygen and carbon dioxide via the bloodstream
- Internal respiration – gas exchange between blood and tissue cells in systemic capillaries
Mechanics of Breathing (Pulmonary Ventilation)

- Completely mechanical process
- Depends on volume changes in the thoracic cavity
- Volume changes lead to pressure changes, which lead to the flow of gases to equalize pressure
Mechanics of Breathing (Pulmonary Ventilation)

- Two phases
 - Inspiration – flow of air into lung
 - Expiration – air leaving lung
Inspiration

- Diaphragm and intercostal muscles contract
- The size of the thoracic cavity increases
- External air is pulled into the lungs due to an increase in intrapulmonary volume
Inspiration

(a) Inspiration

Changes in anterior-posterior and superior-inferior dimensions

- Ribs elevated as external intercostals contract
- External intercostal muscles
- Diaphragm moves inferiorly during contraction

Changes in lateral dimensions

Full inspiration
Exhalation

- Largely a passive process which depends on natural lung elasticity
- As muscles relax, air is pushed out of the lungs
- Forced expiration can occur mostly by contracting internal intercostal muscles to depress the rib cage
Exhalation

Figure 13.7b
Pressure Differences in the Thoracic Cavity

- Normal pressure within the pleural space is always negative (intrapleural pressure)
- Differences in lung and pleural space pressures keep lungs from collapsing
Nonrespiratory Air Movements

- Can be caused by reflexes or voluntary actions

- Examples
 - Cough and sneeze – clears lungs of debris
 - Laughing
 - Crying
 - Yawn
 - Hiccup
Respiratory Volumes and Capacities

- Normal breathing moves about 500 ml of air with each breath (tidal volume [TV])
- Many factors that affect respiratory capacity
 - A person’s size
 - Sex
 - Age
 - Physical condition
- Residual volume of air – after exhalation, about 1200 ml of air remains in the lungs
Respiratory Volumes and Capacities

- **Inspiratory reserve volume (IRV)**
 - Amount of air that can be taken in forcibly over the tidal volume
 - Usually between 2100 and 3200 ml

- **Expiratory reserve volume (ERV)**
 - Amount of air that can be forcibly exhaled
 - Approximately 1200 ml
Respiratory Volumes and Capacities

- Residual volume
 - Air remaining in lung after expiration
 - About 1200 ml
Respiratory Volumes and Capacities

- **Vital capacity**
 - The total amount of exchangeable air
 - Vital capacity = TV + IRV + ERV
- **Dead space volume**
 - Air that remains in conducting zone and never reaches alveoli
 - About 150 ml
Respiratory Volumes and Capacities

- Functional volume
 - Air that actually reaches the respiratory zone
 - Usually about 350 ml
- Respiratory capacities are measured with a spirometer
Respiratory Capacities

Figure 13.9

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Respiratory Sounds

- Sounds are monitored with a stethoscope
- Bronchial sounds – produced by air rushing through trachea and bronchi
- Vesicular breathing sounds – soft sounds of air filling alveoli
External Respiration

- Oxygen movement into the blood
 - The alveoli always has more oxygen than the blood
 - Oxygen moves by diffusion towards the area of lower concentration
 - Pulmonary capillary blood gains oxygen
External Respiration

- Carbon dioxide movement out of the blood
 - Blood returning from tissues has higher concentrations of carbon dioxide than air in the alveoli
 - Pulmonary capillary blood gives up carbon dioxide
- Blood leaving the lungs is oxygen-rich and carbon dioxide-poor
Gas Transport in the Blood

- Oxygen transport in the blood
 - Inside red blood cells attached to hemoglobin (oxyhemoglobin [HbO$_2$])
 - A small amount is carried dissolved in the plasma
Gas Transport in the Blood

- Carbon dioxide transport in the blood
 - Most is transported in the plasma as bicarbonate ion (HCO$_3^-$)
 - A small amount is carried inside red blood cells on hemoglobin, but at different binding sites than those of oxygen
Internal Respiration

- Exchange of gases between blood and body cells
- An opposite reaction to what occurs in the lungs
 - Carbon dioxide diffuses out of tissue to blood
 - Oxygen diffuses from blood into tissue
Internal Respiration

Figure 13.11

(a) Loading of O₂

Hb + O₂ → HbO₂ (Oxyhemoglobin is formed)

- HCO₃⁻ + H⁺ → H₂CO₃ → CO₂ + H₂O
- Bicarbonate ion
- Carbonic acid
- Water

(b) Unloading of CO₂

CO₂ + H₂O → H₂CO₃ → H⁺ + HCO₃⁻
- Water
- Carbonic acid
- Bicarbonate ion

Alveoli (air sacs)

Tissue cells

Red blood cell

Pulmonary capillary

Systemic capillary

Plasma

Red blood cell
External Respiration, Gas Transport, and Internal Respiration

Summary
Neural Regulation of Respiration

- Activity of respiratory muscles is transmitted to the brain by the phrenic and intercostal nerves
- Neural centers that control rate and depth are located in the medulla
- The pons appears to smooth out respiratory rate
- Normal respiratory rate (eupnea) is 12–15 respirations per minute
- Hypernia is increased respiratory rate often due to extra oxygen needs
Neural Regulation of Respiration

Figure 13.12

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Factors Influencing Respiratory Rate and Depth

- Physical factors
 - Increased body temperature
 - Exercise
 - Talking
 - Coughing
- Volition (conscious control)
- Emotional factors
Factors Influencing Respiratory Rate and Depth

- Chemical factors
 - Carbon dioxide levels
 - Level of carbon dioxide in the blood is the main regulatory chemical for respiration
 - Increased carbon dioxide increases respiration
 - Changes in carbon dioxide act directly on the medulla oblongata
Factors Influencing Respiratory Rate and Depth

• Chemical factors (continued)

• Oxygen levels
 • Changes in oxygen concentration in the blood are detected by chemoreceptors in the aorta and carotid artery
 • Information is sent to the medulla oblongata
Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

- Exemplified by chronic bronchitis and emphysema
- Major causes of death and disability in the United States
Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

- Features of these diseases
 - Patients almost always have a history of smoking
 - Labored breathing (dyspnea) becomes progressively more severe
 - Coughing and frequent pulmonary infections are common
Respiratory Disorders: Chronic Obstructive Pulmonary Disease (COPD)

• Features of these diseases (continued)
 • Most victims retain carbon dioxide, are hypoxic and have respiratory acidosis
 • Those infected will ultimately develop respiratory failure
Emphysema

- Alveoli enlarge as adjacent chambers break through
- Chronic inflammation promotes lung fibrosis
- Airways collapse during expiration
- Patients use a large amount of energy to exhale
- Overinflation of the lungs leads to a permanently expanded barrel chest
- Cyanosis appears late in the disease
Chronic Bronchitis

- Mucosa of the lower respiratory passages becomes severely inflamed
- Mucus production increases
- Pooled mucus impairs ventilation and gas exchange
- Risk of lung infection increases
- Pneumonia is common
- Hypoxia and cyanosis occur early
Chronic Obstructive Pulmonary Disease (COPD)

- Tobacco smoke
- Air pollution

Continual bronchial irritation and inflammation

Chronic bronchitis
Excessive mucus production, chronic productive cough, bronchospasm

Breakdown of elastin in connective tissue of lungs

Emphysema
Destruction of alveolar walls, lung fibrosis, air trapping

- Airway obstruction or air trapping
- Dyspnea
- Frequent infections

Respiratory failure

Figure 13.13

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Lung Cancer

- Accounts for 1/3 of all cancer deaths in the United States
- Increased incidence associated with smoking
- Three common types
 - Squamous cell carcinoma
 - Adenocarcinoma
 - Small cell carcinoma
Sudden Infant Death syndrome (SIDS)

- Apparently healthy infant stops breathing and dies during sleep
- Some cases are thought to be a problem of the neural respiratory control center
- One third of cases appear to be due to heart rhythm abnormalities
Asthma

- Chronic inflamed hypersensitive bronchiole passages
- Response to irritants with dyspnea, coughing, and wheezing
Developmental Aspects of the Respiratory System

- Lungs are filled with fluid in the fetus.
- Lungs are not fully inflated with air until two weeks after birth.
- Surfactant that lowers alveolar surface tension is not present until late in fetal development and may not be present in premature babies.
Developmental Aspects of the Respiratory System

- Important birth defects
 - Cystic fibrosis – oversecretion of thick mucus clogs the respiratory system
 - Cleft palate
Aging Effects

- Elasticity of lungs decreases
- Vital capacity decreases
- Blood oxygen levels decrease
- Stimulating effects of carbon dioxide decreases
- More risks of respiratory tract infection
Respiratory Rate Changes Throughout Life

- Newborns – 40 to 80 respirations per minute
- Infants – 30 respirations per minute
- Age 5 – 25 respirations per minute
- Adults – 12 to 18 respirations per minute
- Rate often increases somewhat with old age